Понятие о количестве теплоты сформировалось на ранних стадиях развития современной физики, когда еще не существовало внятных представлений о внутреннем строении вещества, о том, что такое энергия, о том какие формы энергии существуют в природе и об энергии, как форме движения и превращения материи.
Под количеством теплоты понимается физическая величина эквивалентная переданной материальному телу энергии в процессе теплового обмена.
Устаревшей единицей количества теплоты является калория, равная 4.2 Дж, сегодня данная единица практически не применяется, а ее место занял джоуль.
Изначально предполагалось, что переносчиком тепловой энергии является некая совершенно невесомая среда, имеющая свойства жидкости. Многочисленные физические задачи теплопереноса решались и до сих пор решаются исходя из такой предпосылки. Существование гипотетического теплорода было положено в основу множества правильных в сущности построений. Считалось, что теплород выделяется и поглощается в явлениях нагрева и остывания, плавления и кристаллизации. Верные уравнения процессов теплообмена были получены исходя из неверных физических концепций. Известен закон, согласно которому количество теплоты прямо пропорционально массе тела, участвующего в теплообмене, и градиенту температуры:
Где Q – количество теплоты, m масса тела, а коэффициент с – величина, получившая название удельной теплоемкости. Удельная теплоемкость – есть характеристика вещества участвующего в процессе.
Работа в термодинамике
В результат тепловых процессов может совершаться чисто механическая работа. Например, нагреваясь, газ увеличивает свой объем. Возьмем ситуацию, как на рисунке ниже:
В данном случае механическая работа окажется равной силе давления газа на поршень умноженной на путь, проделанный поршнем под давлением. Разумеется, это простейший случай. Но даже в нем можно заметить одну сложность: сила давления будет зависеть от объема газа, а, значит, мы имеем дело не с константами, а с переменными величинами. Поскольку все три переменные: давление, температура и объем связаны друг с другом, то подсчет работы существенно усложняется. Выделяют некоторые идеальные, бесконечно-медленные процессы: изобарный, изотермический, адиабатный и изохорный – для которых такие расчеты можно выполнить относительно просто. Строится график зависимости давления от объема и работа вычисляется как интеграл вида:
Например, для изотермического процесса зависимость P от V будет гиперболой:
А формула для работы:
Аналогичные подсчеты можно выполнить и для других процессов.